
13 Desugaring as a Language Feature
We have thus far extensively discussed and relied upon desugaring, but our current
desguaring mechanism have been weak. We have actually used desugaring in two
different ways. One, we have used it to shrink the language: to take a large language
and distill it down to its core [REF]. But we have also used it to grow the language:
to take an existing language and add new features to it [REF]. This just shows that
desugaring is a tremendously useful feature to have. Indeed, it is so useful that we
might ask two questions:

• Because we create languages to simplify the creation of common tasks, what
would a language designed to support desugaring look like? Note that by “look”
we don’t mean only syntax but also its key behavioral properties.

• Given that general-purpose languages are often used as a target for desugaring,
why don’t they offer desugaring capabilities in the language itself ? For instance,
this might mean extending a base language with the additional language that is
the response to the previous question.

We are going to explore the answer to both questions simultaneously, by studying the
facilities provided for this by Racket.

13.1 A First Example
DrRacket has a very
useful tool called
the Macro Stepper,
which shows the
step-by-step
expansion of
programs. You
should try all the
examples in this
chapter using the
Macro Stepper. For
now, however, you
should run them in
#lang plai rather
than #lang

plai-typed.

Remember that in [REF] we added let as syntactic sugar over lambda. The pattern
we followed was this:

(let (var val) body)

is transformed into

((lambda (var) body) val)

Do Now!

If this doesn’t sound familiar, now would be a good time to refresh your
memory of why this works.

The simplest way of describing this transformation would be to state it directly: to
write, somehow,

(let (var val) body)

->

((lambda (var) body) val)

In fact, this is almost precisely what Racket enables you to do. We’ll use the name
my-let instead of
let Because the
latter is already
defined in Racket.

(define-syntax my-let-1

(syntax-rules ()

[(my-let-1 (var val) body)

((lambda (var) body) val)]))

91



syntax-rules tells Racket that whenever it sees an expression with my-let-1 imme-
diately after the opening parenthesis, it should check that it follows the pattern (my-

let-1 (var val) body). The var, val and body are syntactic variables: they are
variables that stand for bodies of code. In particular, they match whatever s-expression
is in that position. If the expression matches the pattern, then the syntactic variables
are bound to the corresponding parts of the expression, and become available for use
in the right-hand side. You may have

noticed some
additional syntax,
such as (). We’ll
explain this later.

The right-hand side—in this case, ((lambda (var) body) val)—is the output
generated. Each of the syntactic variables are replaced with the corresponding parts
of the input using our old friend, substitution. This substitution is utterly simplistic: it
makes no attempt to. Thus, if we were to try using it with

(my-let-1 (3 4) 5)

Racket would not initially complain that 3 is provided in an identifier position; rather,
it would let the identifier percolate through, desugaring this into

((lambda (3) 5) 4)

which in turn produces an error:
lambda: expected either <id> or `[<id> : <type>]'

for function argument in: 3

This immediately tells us that the desugaring process is straightforward in its func-
tion: it doesn’t attempt to guess or be clever, but instead simply rewrites while substi-
tuting. The output is an expression that is again subject to desugaring.

As a matter of terminology, this simple form of expression-rewriting is often called
a macro, as we mentioned earlier in [REF]. Traditionally this form of desugaring is
called macro expansion, though this term is misleading because the output of desugar-
ing can be smaller than the input (though it is usually larger).

Of course, in Racket, a let can bind multiple identifiers, not just one. If we were
to write this informally, say on a board, we might write something like (let ([var

val] ...) body) -> ((lambda (var ...) body) val ...)with the ...mean-
ing “zero or more”, and the intent being that the var ... in the output should corre-
spond to the sequence of vars in the input. Again, this is almost precisely Racket
syntax:

(define-syntax my-let-2

(syntax-rules ()

[(my-let-2 ([var val] ...) body)

((lambda (var ...) body) val ...)]))

Observe the power of the ... notation: the sequence of “pairs” in the input is turned
into a pair of sequences in the output; put differently, Racket “unzips” the input se-
quence. Conversely, this same notation can be used to zip together sequences.

92



13.2 Syntax Transformers as Functions
Earlier we saw that my-let-1 does not even attempt to ensure that the syntax in the
identifier position is truly (i.e., syntactically) an identifier. We cannot remedy that with
the syntax-rules mechanism, but we can with a much more powerful mechanism
called syntax-case. Because syntax-case exhibits many other useful features as
well, we’ll introduce it and then grow it gradually.

The first thing to understand is that a macro is actually a function. It is not, however,
a function from regular run-time values to other run-time values, but rather a function
from syntax to syntax. These functions execute in a world whose purpose is to create
the program to execute. Observe that we’re talking about the program to execute: the
actual execution of the program may only occur much later (or never at all). This point
is actually extremely clear when we examine desugaring, which is very explicitly a
function from (one kind of) syntax to (another kind of) syntax. This is perhaps obscured
above in two ways:

• The notation of syntax-rules, with no explicit parameter name or other “func-
tion header”, may not make clear that it is a functional transformation (though
the rewriting rule format does allude to this fact).

• In desugaring, we specify one atomic function for the entire process. Here, we
are actually writing several little functions, one for each kind of new syntactic
construct (such as my-let-1), and these pieces are woven together by an invisi-
ble function that controls the overall rewriting process. (As a concrete example,
it is not inherently clear that the output of a macro is expanded further—though
a simple example immediately demonstrates that this is indeed the case.)

Exercise

Write one or more macros to confirm that the output of a macro is ex-
panded further.

There is one more subtlety. Because the form of a macro looks rather like Racket
code, it is not immediately clear that it “lives in another world”. In the abstract, it
may be helpful to imagine that the macro definitions are actually written in an entirely
different language that processes only syntax. This simplicity is, however, misleading.
In practice, program transformers—also called compilers—are full-blown programs,
too, and need all the power of ordinary programs. This would have necessitated the
creation of a parallel language purely for processing programs. This would be wasteful
and pointless; therefore, Racket instead endows syntax-transforming programs with the
full power of Racket itself.

With that prelude, let’s now introduce syntax-case. We’ll begin by simply rewrit-
ing my-let-1 (under the name my-let-3) using this new notation. First, we have to
write a header for the definition; notice already the explicit parameter:

<sc-macro-eg> ::=

(define-syntax (my-let-3 x)

<sc-macro-eg-body>)

93



This binds x to the entire (my-let-3 ...) expression.
As you might imagine, define-syntax simply tells Racket you’re about to define

a new macro. It does not pick precisely how you want to implement it, leaving you free
to use any mechanism that’s convenient. Earlier we used syntax-rules; now we’re
going to use syntax-case. In particular, syntax-case needs to explicitly be given
access to the expression to pattern-match:

<sc-macro-eg-body> ::=

(syntax-case x ()

<sc-macro-eg-rule>)

Now we’re ready to express the rewrite we wanted. Previously a rewriting rule had
two parts: the structure of the input and the corresponding output. The same holds
here. The first (matching the input) is the same as before, but the second (the output) is
a little different:

<sc-macro-eg-rule> ::=

[(my-let-3 (var val) body)

#'((lambda (var) body) val)]

Observe the crucial extra characters: #'. Let’s examine what that means.
In syntax-rules, the entire output part simply specifies the structure of the out-

put. In contrast, because syntax-case is laying bare the functional nature of transfor-
mation, the output part is in fact an arbitrary expression that may perform any compu-
tations it wishes. It must simply evaluate to a piece of syntax.

Syntax is actually a distinct datatype. As with any distinct dataype, it has its own
rules for construction. Concretely, we construct syntax values by writing #'; the fol-
lowing s-expression is treated as a syntax value. (In case you were wondering, the x

bound in the macro definition above is also of this datatype.)
The syntax constructor, #', enjoys a special property. Inside the output part of the

macro, all syntax variables in the input are automatically bound, and replaced on oc-
currence. As a result, when the expander encounters var in the output, say, it replaces
var with the corresponding part of the input expression.

Do Now!

Remove the #' and try using the above macro definition. What happens?

So far, syntax-case merely appears to be a more complicated form of syntax-
rules: perhaps slightly better in that it more cleanly delineates the functional nature
of expansion, and the type of output, but otherwise simply more unwieldy. As we will
see, however, it also offers significant power.

Exercise

syntax-rules can actually be expressed as a macro over syntax-case.
Define it.

94



13.3 Guards
Now we can return to the problem that originally motivated the introduction of syntax-
case: ensuring that the binding position of a my-let-3 is syntactically an identifier.
For this, you need to know one new feature of syntax-case: each rewriting rule can
have two parts (as above), or three. If there are three present, the middle one is treated
as a guard: a predicate that must evaluate to true for expansion to proceed rather than
signal a syntax error. Especially useful in this context is the predicate identifier?,
which determines whether a syntax object is syntactically an identifier (or variable).

Do Now!

Write the guard and rewrite the rule to incorporate it.

Hopefully you stumbled on a subtlety: the argument to identifier? is of type
syntax. It needs to refer to the actual fragment of syntax bound to var. Recall that var
is bound in the syntax space, and #' substitutes identifiers bound there. Therefore, the
correct way to write the guard is:

(identifier? #'var)

With this information, we can now write the entire rule:
<sc-macro-eg-guarded-rule> ::=

[(my-let-3 (var val) body)

(identifier? #'var)

#'((lambda (var) body) val)]

Do Now!

Now that you have a guarded rule definition, try to use the macro with a
non-identifier in the binding position and see what happens.

13.4 Or: A Simple Macro with Many Features
Consider or, which implements disjunction. It is natural, with prefix syntax, to allow
or to have an arbitrary number of sub-terms. We expand or into nested conditionals
that determine the truth of the expression.

13.4.1 A First Attempt

Let’s try a first version of or:

(define-syntax (my-or-1 x)

(syntax-case x ()

[(my-or-1 e0 e1 ...)

#'(if e0

e0

(my-or-1 e1 ...))]))

95



It says that we can provide any number of sub-terms (more on this in a moment).
Expansion rewrites this into a conditional that tests the first sub-term; if this is a true
value it returns that value (more on this in a moment!), otherwise it is the disjunction
of the remaining terms.

Let’s try this on a simple example. We would expect this to evaluate to true, but
instead:
> (my-or-1 #f #t)

my-or-1: bad syntax in: (my-or-1)

What happened? This expression turned into

(if #f

#f

(my-or-1 #t))

which in turn expanded into

(if #f

#f

(if #t

#t

(my-or-1)))

for which there is no definition. That’s because the pattern e0 e1 ... means one or
more sub-terms, but we ignored the case when there are zero. What happens when
there are no sub-terms? The identity for disjunction is falsehood.

Exercise

Why is #f the right default?

By filling it in below, we illustrate a macro that has more than one rule. Macro rules
are matched sequentially, so we should be sure to put the most specific rules first, lest
they get overridden by more general ones (though in this particular case, the two rules
are non-overlapping). This yields our improved macro:

(define-syntax (my-or-2 x)

(syntax-case x ()

[(my-or-2)

#'#f]

[(my-or-2 e0 e1 ...)

#'(if e0

e0

(my-or-2 e1 ...))]))

which now expands as we expect. In what follows, we will find it useful to have a
special case when there is only a single sub-term:

(define-syntax (my-or-3 x)

(syntax-case x ()

96



[(my-or-3)

#'#f]

[(my-or-3 e)

#'e]

[(my-or-3 e0 e1 ...)

#'(if e0

e0

(my-or-3 e1 ...))]))

This keeps the output of expansion more concise, which we will find useful below. Observe that in this
version of the
macro, the patterns
are not disjoint: the
third (one-or-more
sub-terms)
subsumes the
second (one
sub-term).
Therefore, it is
essential that the
second rule not
swap with the third.

13.4.2 Guarding Evaluation

We said above that this expands as we expect. Or does it? Let’s try the following
example:

(let ([init #f])

(my-or-3 (begin (set! init (not init))

init)

#f))

Observe that or returns the actual value of the first “truthy” value, so the developer can
use it in further computations. Therefore, this returns the value of init. What do we
expect it to be? Naturally, because we’ve negated the value of init once, we expect it
to be #t. But evaluating it produces #f! This problem is not

an artifact of set!.
If instead of internal
mutation we had,
say, printed output,
the printing would
have occurred
twice.

To understand why, we have to examine the expanded code. It is this:

(let ([init #f])

(if (begin (set! init (not init))

init)

(begin (set! init (not init))

init)

#f))

Aha! Because we’ve written the output pattern as

#'(if e0

e0

...)

This looked entirely benign when we first wrote it, but it illustrates a very important
principle when writing macros (or indeed any other program transformation systems):
do not copy code! In our setting, a syntactic variable should never be repeated; if you
need to repeat it in a way that might cause multiple execution of that code, make sure
you have considered the consequences of this. Alternatively, if you meant to work
with the value of the expression, bind it once and use the bound identifier’s name
subsequently. This is easy to demonstrate:

97



(define-syntax (my-or-4 x)

(syntax-case x ()

[(my-or-4)

#'#f]

[(my-or-4 e)

#'e]

[(my-or-4 e0 e1 ...)

#'(let ([v e0])

(if v

v

(my-or-4 e1 ...)))]))

This pattern of introducing a binding creates a new potential problem: you may end up
evaluating expressions that weren’t necessary. In fact, it creates a second, even more
subtle one: even if it going to be evaluated, you may evaluate it in the wrong context!
Therefore, you have to reason carefully about whether an expression will be evaluated,
and if so, evaluate it once in just the right place, then store that value for subsequent
use.

When we repeat our previous example, that contained the set!, with my-or-4, we
see that the result is #t, as we would have hoped.

13.4.3 Hygiene

Hopefully now you’re nervous about something else.
Do Now!

What?

Consider the macro (let ([v #t]) (my-or-4 #f v)). What would we expect
this to compute? Naturally, #t: the first branch is #f but the second is v, which is
bound to #t. But let’s look at the expansion:

(let ([v #t])

(let ([v #f])

(if v

v

v)))

This expression, when run directly, evaluates to #f. However, (let ([v #t]) (my-

or-4 #f v)) evaluates to #t. In other words, the macro seems to magically produce
the right value: the names of identifiers chosen in the macro seem to be independent of
those introduced by the macro! This is unsurprising when it happens in a function; the
macro expander enjoys a property called hygiene that gives it the same property.

One way to think about hygiene is that it effectively automatically renames all
bound identifiers. That is, it’s as if the program expands as follows:

(let ([v #t])

(or #f v))

98



turns into

(let ([v1 #t])

(or #f v1))

(notice the consistent renaming of v to v1), which turns into

(let ([v1 #t])

(let ([v #f])

v

v1))

which, after renaming, becomes

(let ([v1 #t])

(let ([v2 #f])

v2

v1))

when expansion terminates. Observe that each of the programs above, if run directly,
will produce the correct answer.

13.5 Identifier Capture
Hygienic macros address a routine and important pain that creators of syntactic sugar
confront. On rare instances, however, a developer wants to intentionally break hygiene.
Returning to objects, consider this input program:

(define os-1

(object/self-1

[first (x) (msg self 'second (+ x 1))]

[second (x) (+ x 1)]))

What does the macro look like? Here’s an obvious candidate:

(define-syntax object/self-1

(syntax-rules ()

[(object [mtd-name (var) val] ...)

(let ([self (lambda (msg-name)

(lambda (v) (error 'object "nothing here")))])

(begin

(set! self

(lambda (msg)

(case msg

[(mtd-name) (lambda (var) val)]

...)))

self))]))

99



Unfortunately, this macro produces the following error:
self: unbound identifier in module in: self

which is referring to the self in the body of the method bound to first.
Exercise

Work through the hygienic expansion process to understand why error is
the expected outcome.

Before we jump to the richer macro, let’s consider a variant of the input term that
makes the binding explicit:

(define os-2

(object/self-2 self

[first (x) (msg self 'second (+ x 1))]

[second (x) (+ x 1)]))

The corresponding macro is a small variation on what we had before:

(define-syntax object/self-2

(syntax-rules ()

[(object self [mtd-name (var) val] ...)

(let ([self (lambda (msg-name)

(lambda (v) (error 'object "nothing here")))])

(begin

(set! self

(lambda (msg)

(case msg

[(mtd-name) (lambda (var) val)]

...)))

self))]))

This macro expands without difficulty.
Exercise

Work through the expansion of this version and see what’s different.

This offers a critical insight: had the identifier that goes in the binding position been
written by the macro user, there would have been no problem. Therefore, we want to
be able to pretend that the introduced identifier was written by the user. The function
datum->syntax converts the s-expression in its second argument; its first argument is
which syntax to pretend it was a part of (in our case, the original macro use, which is
bound to x). To introduce the result into the environment used for expansion, we use
with-syntax to bind it in that environment:

(define-syntax (object/self-3 x)

(syntax-case x ()

[(object [mtd-name (var) val] ...)

(with-syntax ([self (datum->syntax x 'self)])

100



#'(let ([self (lambda (msg-name)

(lambda (v) (error 'object "nothing here")))])

(begin

(set! self

(lambda (msg-name)

(case msg-name

[(mtd-name) (lambda (var) val)]

...)))

self)))]))

With this, we can go back to having self be implicit:

(define os-3

(object/self-3

[first (x) (msg self 'second (+ x 1))]

[second (x) (+ x 1)]))

13.6 Influence on Compiler Design
The use of macros in a language’s definition has an impact on all tools, especially com-
pilers. As a working example, consider let. let has the virtue that it can be compiled
efficiently, by just extending the current environment. In contrast, the expansion of let
into function application results in a much more expensive operation: the creation of a
closure and its application to the argument, achieving effectively the same result but at
the cost of more time (and often space).

This would seem to be an argument against using the macro. However, a smart
compiler recognizes that this pattern occurs often, and instead internally effectively
converts left-left-lambda [REF] back into the equivalent of let. This has two advan-
tages. First, it means the language designer can freely use macros to obtain a smaller
core language, rather than having to trade that off against the execution cost.

It has a second, much subtler, advantage. Because the compiler recognizes this
pattern, other macros can also exploit it and obtain the same optimization; they don’t
need to contort their output to insert let terms if the left-left-lambda pattern occurs
naturally, as they would have to do otherwise. For instance, the left-left-lambda pattern
occurs naturally when writing certain kinds of pattern-matchers, but it would take an
extra step to convert this into a let in the expansion—which is no longer necessary.

13.7 Desugaring in Other Languages
Many modern languages define operations via desguaring, not only Racket. In Python,
for instance, iterating using for is simply a syntactic pattern. A developer who writes
for x in o is

• introducing a new identifier (call it i—but be sure to not capture any other i the
programmer has already defined, i.e., bind i hygienically!),

• binding it to an iterator obtained from o, and

101


